Oriol Vinyals and Quoc Le. “A Neural Conversational Model” Model-Free Episodic Control

State of the art deep reinforcement learning algorithms take many millions of interactions to attain human-level performance. Humans, on the other hand, can very quickly exploit highly rewarding nuances of an environment upon first discovery. In the brain, such rapid learning is thought to depend on the hippocampus and its capacity for episodic memory. Here we investigate whether a simple model of hippocampal episodic control can learn to solve difficult sequential decision-making tasks. We demonstrate that it not only attains a highly rewarding strategy significantly faster than state-of-the-art deep reinforcement learning algorithms, but also achieves a higher overall reward on some of the more challenging domains. Using Fast Weights to Attend to the Recent Past Neural Episodic Control

We propose Neural Episodic Control: a deep reinforcement learning agent that is able to rapidly assimilate new experiences and act upon them. Our agent uses a semi-tabular representation of the value function: a buffer of past experience containing slowly changing state representations and rapidly updated estimates of the value function. We show across a wide range of environments that our agent learns significantly faster than other state-of-the-art, general purpose deep reinforcement learning agents. Relational recurrent neural networks

Memory-based neural networks model temporal data by leveraging an ability to remember information for long periods. It is unclear, however, whether they also have an ability to perform complex relational reasoning with the information they remember. Here, we first confirm our intuitions that standard memory architectures may struggle at tasks that heavily involve an understanding of the ways in which entities are connected – i.e., tasks involving relational reasoning. We then improve upon these deficits by using a new memory module – a \textit{Relational Memory Core} (RMC) – which employs multi-head dot product attention to allow memories to interact. Finally, we test the RMC on a suite of tasks that may profit from more capable relational reasoning across sequential information, and show large gains in RL domains (e.g. Mini PacMan), program evaluation, and language modeling, achieving state-of-the-art results on the WikiText-103, Project Gutenberg, and GigaWord datasets. A Biologically Inspired Visual Working Memory for Deep Networks

The ability to look multiple times through a series of pose-adjusted glimpses is fundamental to human vision. This critical faculty allows us to understand highly complex visual scenes. Short term memory plays an integral role in aggregating the information obtained from these glimpses and informing our interpretation of the scene. Computational models have attempted to address glimpsing and visual attention but have failed to incorporate the notion of memory. We introduce a novel, biologically inspired visual working memory architecture that we term the Hebb-Rosenblatt memory. We subsequently introduce a fully differentiable Short Term Attentive Working Memory model (STAWM) which uses transformational attention to learn a memory over each image it sees. The state of our Hebb-Rosenblatt memory is embedded in STAWM as the weights space of a layer. By projecting different queries through this layer we can obtain goal-oriented latent representations for tasks including classification and visual reconstruction. Our model obtains highly competitive classification performance on MNIST and CIFAR-10. As demonstrated through the CelebA dataset, to perform reconstruction the model learns to make a sequence of updates to a canvas which constitute a parts-based representation. Classification with the self supervised representation obtained from MNIST is shown to be in line with the state of the art models (none of which use a visual attention mechanism). Finally, we show that STAWM can be trained under the dual constraints of classification and reconstruction to provide an interpretable visual sketchpad which helps open the `black-box' of deep learning.